OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following source.

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.fedworld.gov *Web site* http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source.

Office of Scientific and Technical Information P.O. Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@adonis.osti.gov
Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Data Compilation for AGR-2 UCO Variant Coated Particle Batch G73J-14-93073A

John D. Hunn Oak Ridge National Laboratory

Coated particle fuel batch G73J-14-93073A was produced by the Babcock and Wilcox Company (B&W) for possible selection as UCO variant fuel for the Advanced Gas Reactor Fuel Development and Qualification Program's AGR-2 irradiation test. Batch G73J-14-93073A is a single batch of TRISO-coated 425 μ m nominal diameter 14% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The TRISO-coatings consist of a ~50% dense carbon buffer layer (100 μ m nominal thickness) followed by a dense inner pyrocarbon layer (40 μ m nominal thickness) followed by another dense outer pyrocarbon layer (40 μ m nominal thickness). For this variant, argon was added to the hydrogen fluidization gas during SiC deposition.

The AGR-2 Fuel Specification (INL SPC-923) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-2 irradiation test. The bulk of the kernels and coated particle acceptance testing was performed at B&W and is not contained in this report. Sample NP-B7958 was sent to ORNL for supplemental characterization. The procedures for the limited characterization and qualification of the particles performed at ORNL are outlined in ORNL product inspection plan AGR-CHAR-PIP-09. The BAFo equivalent optical anisotropies of the inner and outer pyrocarbon layers are reported on Inspection Report Form IRF-09, with a determination as to whether the particle batch satisfied the specified parameters for this property. The batch was found to satisfy the AGR-2 Fuel Specification SPC-923, Rev. 1 for IPyC and OPyC anisotropy.

Also provided in this data package are data on the true BAFo, average particle weight, OPyC open porosity, and SiC soot inclusion defect fraction. True BAFo is calculated as (1+N)/(1-N), where N is the diattenuation. This differs from equivalent BAFo = 1+3N, which is the calculation used by the fuel specification to allow comparison to historical measurements. Average OPyC open porosity was determined using a single sample to be 0.41 ml/m². One possible SiC soot inclusion was found in a sample of 4729 particles. This corresponds to <1E-3 defect fraction at 95% confidence.

Inspection Report Form IRF-09: AGR-2 Coated Particles

Procedure:	AGR-CHAR-PIP-09 Rev. 0	
Coated particle composite ID:	G73J-14-93073A	
Coated particle composite description:	AGR-2 Variant particle batch	

		Measured Data			Specification		Acceptance	Pass	Data
Property	Mean (x)	Std. Dev.	# measured (n)	k or t value	INL SPC-923	Acceptance Criteria	Test Value	or fail	Records
IPyC anisotropy (BAFo equivalent)	1.0349	0.0012	10	1.833	mean ≤ 1.045	$B = x + ts/\sqrt{n} \le 1.045$	1.036	pass	DRF-18
Tryc anisotropy (BAPO equivalent)		0.0012		3.981	dispersion ≤0.01 ≥1.06	D = x + ks < 1.06	1.040	pass	
OR Contested (OAF)	1.0263	0.0011	10	1.833	mean ≤ 1.035	$8 = x + ts/\sqrt{n} \le 1.035$	1.027	pass	DRF-18
OPyC anisotropy (BAFo equivalent)	1,0203	0.0011	10	3.981	dispersion ≤0.01 ≥1.06	D = x + ks < 1.06	1.031	pass	- DKF-18

Comments	
July Ahm	10-07-08
QC Supervisor Accept coated particle composite (Yes or No): Yes	Date
MAD QA Reviewer	10/14/08 Date

Data Report Form DRF-18A: Measurement of Pyrocarbon Anisotropy using the 2-MGEM - IPyC

Procedure:	AGR-CHAR-DAM-18 Rev. 1
Operator:	G. E. Jellison
Mount ID:	M08082801
Sample ID:	NP-B7958-B01
Sample Description:	G73J-14-93073A AGR-2 Variant batch
Folder containing data:	\\mc-agr\AGR\2-MGEM\R08090201\

Particle #	Grid Dia		Diattenuation	attenuation		valent BAFo =	1+3N
	Position	Average	St. Dev.	Ave. Error	Average	St. Dev.	Ave. Error
1	4,4	0.0122	0.0018	0.0005	1.0366	0.0054	0.0015
2	4,5	0.0117	0.0018	0.0005	1.0351	0.0054	0.0015
3	4,6	0.0113	0.0021	0.0005	1.0339	0.0063	0.0015
4	5,4	0.0116	0.0020	0.0005	1.0348	0.0060	0.0015
5	5,5	0.0116	0.0021	0.0005	1.0348	0.0063	0.0015
6	5,6	0.0112	0.0021	0.0005	1.0336	0.0063	0.0015
7	6,4	0.0121	0.0020	0.0005	1.0363	0.0060	0.0015
8	6,5	0.0118	0.0020	0.0005	1.0354	0.0060	0.0015
9	6,6	0.0120	0.0018	0.0005	1.0360	0.0054	0.0015
10	5,7	0.0109	0.0017	0.0005	1.0327	0.0051	0.0015
Ave	rage	0.0116	0.0019	0.0005	1.0349	0.0058	0.0015

Mean of average baro	per particle: [1.0349	
Standard deviation of average BAFo	o per particle: 0.0012	
	Comments	
		- V = X

A. E. Jullian 9/02/08
Operator 9/02/08

Data Report Form DRF-18B: Measurement of Pyrocarbon Anisotropy using the 2-MGEM - OPyC

Procedure:	AGR-CHAR-DAM-18 Rev. 1
Operator:	G. E. Jellison
Mount ID:	M08082801
Sample ID:	NP-B7958-B01
Sample Description:	G73J-14-93073A AGR-2 Variant batch
Folder containing data:	\\mc-agr\AGR\2-MGEM\R08090201\

Particle #	Grid	Grid Diattenua		100	Equiv	valent BAFo =	1+3N	
	Position	Average	St. Dev.	Ave. Error	Average	St. Dev.	Ave. Error	
1	4,4	0.0089	0.0016	0.0005	1.0267	0.0048	0.0015	
2	4,5	0.0090	0.0017	0.0005	1.0270	0.0051	0.0015	
3	4,6	0.0089	0.0018	0.0005	1.0267	0.0054	0.0015	
4	5,4	0.0092	0.0017	0.0005	1.0276	0.0051	0.0015	
5	5,5	0.0091	0.0020	0.0005	1.0273	0.0060	0.0015	
6	5,6	0.0082	0.0019	0.0005	1.0246	0.0057	0.0015	
7	6,4	0.0083	0.0016	0.0005	1.0249	0.0048	0.0015	
8	6,5	0.0082	0.0018	0.0005	1.0246	0.0054	0.0015	
9	6,6	0.0089	0.0018	0.0005	1.0267	0.0054	0.0015	
10	5,7	0.0089	0.0017	0.0005	1.0267	0.0051	0.0015	
Ave	rage	0.0088	0.0018	0.0005	1.0263	0.0053	0.0015	

contraction (in the contraction of the contraction	Mean of average BAFo per particle: 1	.0263	
	Standard deviation of average BAFo per particle: 0	.0011	

Comments

1, E. Jellin 9/02/08
Operator Date

Data Report Form DRF-18A: Measurement of Pyrocarbon Anisotropy using the 2-MGEM - IPyC

Procedure:	AGR-CHAR-DAM-18 Rev. 1
Operator:	G. E. Jellison
Mount ID:	M08082801
Sample ID:	NP-B7958-B01
Sample Description:	G73J-14-93073A AGR-2 Variant batch
Folder containing data:	\\mc-agr\AGR\2-MGEM\R08090201\

Particle #	Grid	tra III	Diattenuation	111111111111111111111111111111111111111	True	BAFo = (1+N)	/(1-N)
Particle #	Position	Average	St. Dev.	Ave. Error	Average	St. Dev.	Ave. Error
1	4,4	0.0122	0.0018	0.0005	1.0247	0.0037	0.0010
2	4,5	0.0117	0.0018	0.0005	1.0237	0.0037	0.0010
3	4,6	0.0113	0.0021	0.0005	1.0229	0.0043	0.0010
4	5,4	0.0116	0.0020	0.0005	1.0235	0.0041	0.0010
5	5,5	0.0116	0.0021	0.0005	1.0235	0.0043	0.0010
6	5,6	0.0112	0.0021	0.0005	1.0227	0.0043	0.0010
7	6,4	0.0121	0.0020	0.0005	1.0245	0.0041	0.0010
8	6,5	0.0118	0.0020	0.0005	1.0239	0.0041	0.0010
9	6,6	0.0120	0.0018	0.0005	1.0243	0.0037	0.0010
10	5,7	0.0109	0.0017	0.0005	1.0220	0.0035	0.0010
Ave	rage	0.0116	0.0019	0.0005	1.0236	0.0040	0.0010

Mean of average BAFo per particle:	1.0236
Standard deviation of average BAFo per particle:	0.0008

Comments

A. E. Jellin
Operator

9/02/08
Date

Data Report Form DRF-18B: Measurement of Pyrocarbon Anisotropy using the 2-MGEM - OPyC

Procedure:	AGR-CHAR-DAM-18 Rev. 1
Operator:	G. E. Jellison
Mount ID:	M08082801
Sample ID:	NP-B7958-B01
Sample Description:	G73J-14-93073A AGR-2 Variant batch
Folder containing data:	\\mc-agr\AGR\2-MGEM\R08090201\

Particle #	Grid		Diattenuation)	True	BAFo = (1+N)	/(1-N)
raiticle #	Position	Average	St. Dev.	Ave. Error	Average	St. Dev.	Ave. Error
1	4,4	0.0089	0.0016	0.0005	1.0180	0.0033	0.0010
2	4,5	0.0090	0.0017	0.0005	1.0182	0.0035	0.0010
3	4,6	0.0089	0.0018	0.0005	1.0180	0.0037	0.0010
4	5,4	0.0092	0.0017	0.0005	1.0186	0.0035	0.0010
5	5,5	0.0091	0.0020	0.0005	1.0184	0.0041	0.0010
6	5,6	0.0082	0.0019	0.0005	1.0165	0.0039	0.0010
7	6,4	0.0083	0.0016	0.0005	1.0167	0.0033	0.0010
8	6,5	0.0082	0.0018	0.0005	1.0165	0.0037	0.0010
9	6,6	0.0089	0.0018	0.0005	1.0180	0.0037	0.0010
10	5,7	0.0089	0.0017	0.0005	1.0180	0.0035	0.0010
Ave	rage	0.0088	0.0018	0.0005	1.0177	0.0036	0.0010

Mean of average BAFo per particle:	1.0177
Standard deviation of average BAFo per particle:	0.0008

Comments

A. E. Jellin 9/02/08
Operator Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	NP-B7958
Particle Lot Description:	From G73J-14-93073A AGR-2 Variant Batch
Filename:	\\mc-agr\AGR\ParticleWeight\W08082901_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	0.1593	0.1380	0.1353	0.1489	0.1203
Number of particles:	155	135	133	145	117
Average weight/particle (g):	1.028E-03	1.022E-03	1.017E-03	1.027E-03	1.028E-03

Mean average weight/particle (g):	1.024E-03
Standard error in mean average weight/particle (g):	2.09E-06

Date 8-29-08

Data Report Form DRF-31: Measurement of Open Porosity using a Mercury Porosimeter

Data report on E	on 51. Headingment of open Forosity using a Fiercary Forositive.	
	AGR-CHAR-DAM-31 Rev. 1	
Operator:	S. D. Nunn	
Coated particle batch ID:	Coated particle batch ID: NP-B7958-D01	
Batch Description:	From G73J-14-93073A AGR-2 Variant batch	
Thermocouple Expiration Date:	5/15/09	
Penetrometer Expiration Date:	7/10/08	
Completed DRF Filename:	\\mc-agr\AGR\PorosImeter\S08091101\S08091101_DRF31R1.xls	
Mean average w	veight/particle (g): 1.02E-03	
Standard error in mean average w	veight/particle (g): 3.87E-06	
Weigh	nt of particles (g): 3.8113	
Approximate nu	umber of particles: 3722	
Uncertainty in nu	umber of particles: 14	
Total envelope volum	me of sample (cc): 1.276	
Average envelope vo	lume/particle (cc): 3.43E-04	
Sample envelo	ope density (g/cc): 2.988	
	ameter (microns): 8.68E+02	
	ea/particle (cm2): 2.37E-02	
	urface area (cm2): 8.82E+01	
Intruded mercury volume from 250		
Open	porosity (ml/m2): 4.08E-01	
	Comments	
	The second secon	
5.D. Nunn	2/ / 8	
J. J. Munn	9/11/08	

Operator

Date

Data Report Form DRF-32: Counting of Particles with SiC Soot Inclusion Defects by Visual Inspection

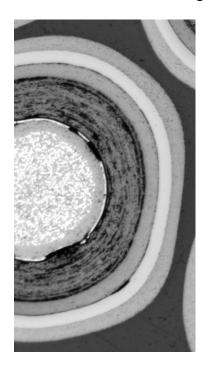
Procedure:	AGR-CHAR-DAM-32 Rev. 0
Operator:	Fred Montgomery
Sample ID:	NP-B7958-E01
Sample Description:	From G73J-14-93073A AGR-2 Variant Batch
Folder containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Inclusions\P08090803\
DRF filename:	\\mc-agr\AGR\ImageProcessing\Completed Inclusions\P08090803 DRF32R0.xls

Mean average weight/particle (g):	1.02E-03
Uncertainty in average weight/particle (g):	2.09E-06
Weight of sample of particles (g):	
Approximate number of particles in sample:	4729
Uncertainty in number of particles in sample:	10

Number of particles with SiC soot inclusion defects: 1

Comments

1/4729 corresponds to <1E-3 defect fraction at 95% confidence.


The one defect identified looked like it may be a chip in the SiC at the IPyC interface. Initial polish on mount 4 resulted in 5 particles with SiC gouges. These were removed by additional polishing, except for the deep one at the IPyC/SiC interface, which was identified as a defect.

Overall, the SiC/OPyC surface looks rough and Is probably a strong interface.

Fiel C. Montgomery	10-14-08
Operator	Date

From frame 43, mount 4 of NP-B7958-E01, G73J-14-93073A AGR-2 Variant batch.

This is the only particle out of 4729 identified with a bright field anomaly in the SiC. The defect appears to be a relatively large and deep chip at the IPyC interface. This may be related to a weakened region caused by a soot inclusion. However, normally a soot inclusion will extend over a greater arc.

